The Largest Independent Automotive Information Resourse

Monday, August 3, 2009

Steering Systems

The manual steering system incorporates: 1. steering wheel and column, 2. a manual gearbox and pitman arm or a rack and pinion assembly, 3. linkages; steering knuckles and ball joints; and 4. the wheel spindle assemblies. In Pittman arm systems, the movement inside the steering box causes the Pitman shaft and arm to rotate, applying leverage to the relay rod, which passes the movement to the tie rods. Power steering systems add a hydraulic pump; fluid reservoir; hoses; lines; and either a power assist unit mounted on, or integral with, a power steering gear assembly. There are several different manual steering gears in current use. The "rack and pinion" type is the choice of most manufacturers. The "recirculating ball" type is a past favorite because the balls act as a rolling thread between the wormshaft and the ball nut. Another manual steering gear once popular in imported cars is the "worm and sector" type. Other manual gears are the "worm and tapered pin steering gear" and the "worm and roller steering gear." The steering wheel and column are a major source of injury to the driver, and a range of energy-absorbing and non-intrusion designs have been developed. There is great variation in these designs, some of which are now thought to be not fully effective. Energy-absorbing columns have to serve two functions. First, they must stop the steering wheel and column from being pushed to the rear as the front of the car is crushed in an impact. Before such designs were invented, a common feature of driver injury was for the chest to be impaled by the steering column. The energy-absorbing column must also provide the driver with a tolerable impact as he moves forward and strikes the wheel with his chest. At that point in the crash, the column should build up the load on the driver's chest to a tolerable level, and then deform under that load to give a "ride-down" for the driver. Several design problems are presented in providing this system. One major problem is that collapse of the column due to the frontal crush of the car should not hinder its performance for providing ride-down for the driver's chest. The system must also be so designed that under crash conditions, the wheel stays in such a position that it will strike the driver's chest and not move upwards into the region of his face, or downwards into his abdomen.